Longitudinal neuroimaging studies demonstrate that the adolescent brain continues to mature well into the 20s. This has prompted intense interest in linking neuromaturation to maturity of judgment. Public policy is struggling to keep up with burgeoning interest in cognitive neuroscience and neuroimaging. However, empirical evidence linking neurodevelopmental processes and adolescent real-world behavior remains sparse. Nonetheless, adolescent brain development research is already shaping public policy debates about when individuals should be considered mature for policy purposes. With this in mind, in this article we summarize what is known about adolescent brain development and what remains unknown, as well as what neuroscience can and cannot tell us about the adolescent brain and behavior. We suggest that a conceptual framework that situates brain science in the broader context of adolescent developmental research would help to facilitate research-to-policy translation. Furthermore, although contemporary discussions of adolescent maturity and the brain often use a deficit-based approach, there is enormous opportunity for brain science to illuminate the great strengths and potentialities of the adolescent brain. So, too, can this information inform policies that promote adolescent health and well-being.
In the last decade, a growing body of longitudinal neuroimaging research has demonstrated that adolescence is a period of continued brain growth and change, challenging longstanding assumptions that the brain was largely finished maturing by puberty [1-3]. The frontal lobes, home to key components of the neural circuitry underlying “executive functions” such as planning, working memory, and impulse control, are among the last areas of the brain to mature; they may not be fully developed until halfway through the third decade of life . This finding has prompted interest in linking stage of neuromaturation to maturity of judgment. Indeed, the promise of a biological explanation for often puzzling adolescent health risk behavior ...