The Development Of Mathematics

Read Complete Research Material



The development of mathematics

Introduction

Mathematics, study of relationships among quantities, magnitudes, and properties and of logical operations by which unknown quantities, magnitudes, and properties may be deduced. In the past, mathematics was regarded as the science of quantity, whether of magnitudes, as in geometry, or of numbers, as in arithmetic, or of the generalization of these two fields, as in algebra. Toward the middle of the 19th century, however, mathematics came to be regarded increasingly as the science of relations, or as the science that draws necessary conclusions. This latter view encompasses mathematical or symbolic logic, the science of using symbols to provide an exact theory of logical deduction and inference based on definitions, axioms, postulates, and rules for combining and transforming primitive elements into more complex relations and theorems.This brief survey of the history of mathematics traces the evolution of mathematical ideas and concepts, beginning in prehistory. Indeed, mathematics is nearly as old as humanity itself; evidence of a sense of geometry and interest in geometric pattern has been found in the designs of prehistoric pottery and textiles and in cave paintings. Primitive counting systems were almost certainly based on using the fingers of one or both hands, as evidenced by the predominance of the numbers 5 and 10 as the bases for most number systems today.

Ancient Mathematics

The earliest records of advanced, organized mathematics date back to the ancient Mesopotamian country of Babylonia and to Egypt of the 3rd millennium BC. There mathematics was dominated by arithmetic, with an emphasis on measurement and calculation in geometry and with no trace of later mathematical concepts such as axioms or proofs.

The earliest Egyptian texts, composed about 1800 BC, reveal a decimal numeration system with separate symbols for the successive powers of 10 (1, 10, 100, and so forth), just as in the system used by the Romans. Numbers were represented by writing down the symbol for 1, 10, 100, and so on as many times as the unit was in a given number. For example, the symbol for 1 was written five times to represent the number 5, the symbol for 10 was written six times to represent the number 60, and the symbol for 100 was written three times to represent the number 300. Together, these symbols represented the number 365. Addition was done by totaling separately the units--10s, 100s, and so forth--in the numbers to be added. Multiplication was based on successive doublings, and division was based on the inverse of this process.

The Egyptians used sums of unit fractions (Oe), supplemented by the fraction ', to express all other fractions. For example, the fraction " was the sum of the fractions ' and ~. Using this system, the Egyptians were able to solve all problems of arithmetic that involved fractions, as well as some elementary problems in algebra. In geometry, the Egyptians calculated the correct areas of triangles, rectangles, and trapezoids and the volumes of figures such as bricks, cylinders, and pyramids. To find the area of a circle, the Egyptians ...
Related Ads