Science Curriculum

Read Complete Research Material

SCIENCE CURRICULUM

Science Curriculum

Science Curriculum

Science education deals with the learning and teaching of science knowledge, practices, habits of mind, discourse patterns, and their relation to natural and man-made environments. Because of the importance of science to nations' economic, environmental, and general well-being, much attention has been devoted to helping the public develop awareness and understanding of science and the role it plays in their lives and preparing the next generation of scientists (Roth, 2007).

Science knowledge is typically one of the subjects assessed in large-scale national and international tests such as the National Assessment for Educational Progress and the Trends in International Math and Science Study, underscoring the importance that is attributed to it.

In the United States, the education department of each state then developed their own standards that often, but not always, draw on the national standards and benchmarks. These standards then guide or dictate, depending on the state, which science curricula can be used at various grade levels. Since the standards of individual states often conflict with those of other states and do not prioritize the various science topics, it becomes very difficult to develop curriculum that can be used in multiple states without expanding the scope of textbooks to cover everything required by every state at every grade (Roseman, 2008). As a result, U.S. science curriculum has often been criticized for being a mile wide and an inch deep.

This conceptual understanding perspective treats science learning as a process of building on students' prior ideas about the natural world. These ideas are often at odds with each other, contradict accepted scientific ideas, and are not coherent in the way that scientific theories are expected to be consistent and parsimonious (Lee, 2008). For example, students may think that if a body is not moving then there is no force acting on it, while at the same time recognizing that a body resting on a table is subjected to the force of gravity. Interestingly, students across countries and cultures hold many of the same ideas.

Scientific practices represent the disciplinary norms of scientists as they construct, evaluate, reason, and communicate. When adapted for learners, scientific practices characterize how students use scientific knowledge to make sense of and explain the world. Examples of scientific practices that have been introduced into K-12 science curriculum are designing investigations and controlled experiments; developing evidence-based explanations; and constructing, evaluating, revising, and using models to explain, predict, and communicate (Duschl, 2007).

Practices are important because they help develop both types of science literacy. First, engaging in scientific practices supports learners in developing and using conceptual understanding because they involve understanding that is more meaningful than just describing and recalling phenomena. Second, scientific practices define an important aspect of what it means to partake in the norms and discourse patterns of the scientific community (Davis, 2007).

As mentioned earlier, traditional science textbooks often cover many topics with little depth because they try to cover conflicting standards from multiple states. This can lead to shallow and disconnected ...
Related Ads