The value of R square is 0.847 which is close to 1 so it can be said that a strong relationship exists among the dependent variable and predictors.
ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
845.659
1
845.659
38.858
.000a
Residual
152.341
7
21.763
Total
998.000
8
a. Predictors: (Constant), 1st test grade
b. Dependent Variable: final average
Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
18.989
9.752
1.947
.093
1st test grade
.740
.119
.921
6.234
.000
a. Dependent Variable: final average
Final Average = 18.989 + 0.740*1st test grade
Question 30:
Solution
The ANOVA table for the given data set shows that the model is good fitted; the magnitude of significance F shows that there is association between the variables which means that the higher the Median SAT score charge more in tuition and fees.
ANOVA
df
SS
MS
F
Significance F
Regression
1
133481.474
133481.5
4.53856
0.049004837
Residual
16
470568.526
29410.53
Total
17
604050
The analysis of regression shows that the coefficient of median SAT score is significant at 95% confidence interval, a unit increase in the score will increase the total cost of tuition and fees by 0.01 dollars. The regression equation for the given data set could be given as:
Total Cost ($) = 1491.133 + 0.0102 (Median SAT)
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
1491.133317
134.75769
11.06529
6.6E-09
1205.459777
1776.807
1205.46
1776.807
Total Cost($)
0.010221025
0.00479773
2.13039
0.049005
5.03013E-05
0.020392
5.03E-05
0.020392
Question 31a:
Solution
From the above chart it can be observed that increasing trend is presents so it decompose this trend difference of order 1 has been applied.
Question 31b:
Solution
After applying the difference of 1
Question 31c:
Solution
Autocorrelations
Series:taxes
Lag
Autocorrelation
Std. Errora
Box-Ljung Statistic
Value
df
Sig.b
1
.000
.228
.000
1
1.000
2
.185
.220
.706
2
.702
3
-.171
.212
1.357
3
.716
4
.608
.204
10.229
4
.037
5
-.128
.195
10.660
5
.059
6
-.007
.186
10.662
6
.099
7
-.274
.177
13.071
7
.070
8
.304
.167
16.397
8
.037
9
-.182
.156
17.757
9
.038
10
-.115
.144
18.395
10
.049
11
-.303
.132
23.669
11
.014
12
.104
.118
24.443
12
.018
13
-.165
.102
27.050
13
.012
14
-.141
.083
29.930
14
.008
a. The underlying process assumed is independence (white noise).
b. Based on the asymptotic chi-square approximation.
Partial Autocorrelations
Series:taxes
Lag
Partial Autocorrelation
Std. Error
1
.000
.250
2
.185
.250
3
-.177
.250
4
.619
.250
5
-.289
.250
6
-.240
.250
7
.073
.250
8
-.119
.250
9
-.066
.250
10
-.059
.250
11
-.092
.250
12
-.112
.250
13
-.014
.250
14
-.082
.250
After analyzing the Autocorrelations and Partial Autocorrelations it can be said that there is a increasing trend is presents revenue in state sales tax on certain types of goods and services.
Question 31d:
Solution
Seasonal Decomposition
Series Name:taxes
DATE_
Original Series
Moving Average Series
Ratio of Original Series to Moving Average Series (%)
Seasonal Factor (%)
Seasonally Adjusted Series
Smoothed Trend-Cycle Series
Irregular (Error) Component
Q1 2000
218.000
.
.
88.5
246.212
247.870
.993
Q2 2000
247.000
.
.
98.6
250.409
248.801
1.006
Q3 2000
243.000
250.0000
97.2
97.3
249.782
250.663
.996
Q4 2000
292.000
251.7500
116.0
115.5
252.737
252.658
1.000
Q1 2001
225.000
253.5000
88.8
88.5
254.118
254.971
.997
Q2 2001
254.000
256.5000
99.0
98.6
257.506
257.391
1.000
Q3 2001
255.000
258.2500
98.7
97.3
262.117
259.706
1.009
Q4 2001
299.000
260.5000
114.8
115.5
258.796
261.706
.989
Q1 2002
234.000
263.2500
88.9
88.5
264.282
264.582
.999
Q2 2002
265.000
265.5000
99.8
98.6
268.658
268.789
1.000
Q3 2002
264.000
272.5000
96.9
97.3
271.368
273.791
.991
Q4 2002
327.000
276.5000
118.3
115.5
283.031
279.122
1.014
Q1 2003
250.000
281.0000
89.0
88.5
282.353
283.930
.994
Q2 2003
283.000
287.2500
98.5
98.6
286.906
290.080
.989
Q3 2003
289.000
294.5000
98.1
97.3
297.066
297.368
.999
Q4 2003
356.000
.
.
115.5
308.132
301.012
1.024
Question 32:
Solution
Model Summaryb
Model
R
R Square
Adjusted R Square
Std. Error of the Estimate
1
.810a
.657
.632
.700
a. Predictors: (Constant), taxes
b. Dependent Variable: period 4
The value of R square is 0.657 which is close to 1 so it can be said that a strong relationship exists among the dependent variable and predictors.
ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
13.137
1
13.137
26.797
.000a
Residual
6.863
14
.490
Total
20.000
15
a. Predictors: (Constant), taxes
b. Dependent Variable:period 4
Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
-4.271
1.320
-3.237
.006
taxes
.025
.005
.810
5.177
.000
a. Dependent Variable:period 4
Residuals Statisticsa
Minimum
Maximum
Mean
Std. Deviation
N
Predicted Value
1.22
4.70
2.50
.936
16
Residual
-1.026
1.150
.000
.676
16
Std. Predicted Value
-1.368
2.347
.000
1.000
16
Std. Residual
-1.466
1.643
.000
.966
16
a. Dependent Variable: QUARTER, period 4
Predicted taxes
1.220019382
1.950537225
1.849776144
3.084099397
1.396351275
2.126869119
2.152059389
3.26043129
1.623063709
2.403962094
2.378771823
3.965758863
2.026108037
2.857386962
3.008528585
4.696276707
Question 37:
Solution
The above trend lines indicate that a increasing trend is present in the data set.