The leaves of plants convert carbon dioxide, water, and nutrient chemicals into plant food via a process called photosynthesis. Without this process there would be little or no life on the planet. Most leaves have two parts: The lamina is the leaf's blade; the petiole is its stalk. There are plants that have leaves that grow directly from the stem—these plants do not have a petiole. The petiole extends to the tip of the leaf and branches out to form its veins. Water and chemical nutrients flow through the veins of the leaf where they will be used in the making of the plant's food (Kate, 2005).
Chlorophylls are a class of chemical pigments found in many types of plant life, and are necessary for the process of photosynthesis. Chlorophylls absorb light in particular parts of the electromagnetic spectrum, meaning that they have a very vivid green color, which is characteristic of their presence and encourages industrial applications as well as health promotion (Grimm, 2006).
Photosynthesis is the process by which sunlight is converted into chemical energy within plant cells through organic carbon compounds. It is possible that chlorophyll or a similar substance was a vital link in the evolution of life. The 1997 Pathfinder mission to mars found some evidence that substances similar to chlorophyll might be present in Martian soil (Kate, 2005).
The five types of chlorophyll (a, b, c, d, and e) are found in the higher plants and different forms of algae; bacterio-chlorophyll is found in some types of bacteria. Chlorophylls consist of a magnesium atom surrounded by a porphyrin ring containing nitrogen and with a carbon-hydrogen chain also attached. This structure is quite similar to that of hemoglobin, which is the vital substance within blood that transports oxygen. Since chlorophyll tends to hide other colors present within plants and ...