While the term genetically modified organisms has arisen within the past decade, humans have for centuries been using microorganisms to make products like beer and cheese, and plants and animals have been carefully bred to improve the quality and quantity of the food supply. The elucidation of the structure of DNA and the development of the discipline of molecular biology has made possible the accurate insertion or removal specific genes into or out of the DNA of particular organisms. This enables the design organisms with specific desirable characteristics and the ability to understand which genes control the growth, reproduction, and aging and disease susceptibility of plants and animals (Bail, 2002).
Aside from foods, genetically modified organisms are making their way into other commercial venues. For example, the forestry industry is actively utilizing molecular biology to generate trees capable of faster and straighter growth.
The use of genetically modified organisms in agriculture has expanded at a rapid rate in key agricultural exporting countries in the past decade. Countries where transgenic crops are in advanced stages of field-testing or commercialization include the United States, Argentina, Canada, and Australia. The global area devoted to transgenic crops has increased from 1.7 hectares in 2006, to 27.8 hectares in 2008. In North America, the use of genetically modified cotton, soybean and canola now represents some 50 percent of the total acreage.
Social And Ethical Implications
Critics on one side of the debate contend that number of countries without a strong scientific infrastructure feargenetically modified foods. Others countries with advanced scientific and medical research infrastructure, (e.g., France and other European Union countries) have passed laws regulating genetically modified organisms for economic and political reasons (e.g. as a form of protectionism for their less progressive agricultural systems.)
Source: Kay Simmons/U.S. Department of Agriculture (2009)
In 2001 and 2002, European countries, including France and Germany, pushed for tough European Union rules regulating the sale of genetically modified foods. The US State Department branded the news rules as "unnecessary" and without scientific merit. The US has already warned that a trade war over "biotechnology foods" might develop if the European Union fails to lift blocks to imports.
In 2007, reports surfaced that French scaremongering concerning genetically modified foods caused several African countries fighting starvation to reject genetically modified food supplements that would have reduced starvation and death rates (Falkner, 2007).
On the other side of the debate, critics argue that the impact of these totally new organisms on the environment and on human health cannot presently be completely predicted. As well, the increased yields of genetically modified organisms may contribute to a decrease in crop biological diversity—genetic differences between species. Homogeneity may make crops more susceptible to disease. Thus, the present uncertainty about the cumulative effects in ecosystems or the food chain is making consumers wary.
Considerable controversy has arisen concerning the genetic modification of plants such that their seeds are not capable of growth upon planting. The commercial control and potential monopolization of food production has ...