Aviation Industry

Read Complete Research Material

AVIATION INDUSTRY

Flight Physiology & Maintain Aircraft Safety



Flight Physiology & Maintain Aircraft Safety

Introduction

The stresses of flying, or indeed of any activity, consume energy. This energy is derived from oxygen and from blood sugar. The pilot is unwise to fly for too long without eating. His blood sugar will be low, that is, his energy reserve will be low. Reactions will be sluggish and efficiency will be impaired. It is a good precaution to carry a nutritious snack on long flights.

Over eating

Overeating is equally as unwise as not eating. Drowsiness and excessive gas formation are the result of over indulgence at the dinner table just before a flight. (Leder , 2005) At altitudes above 5000 feet ASL, the body experiences a higher loss of water through the surface area of the lungs than it does at sea level. This loss occurs because the percentage of water vapor in a given volume of air decreases with altitude. Because this water loss is not accompanied by a loss of salt, as occurs with perspiration, there is no accompanying sensation of thirst. Especially on long flights at higher altitudes, it is advised therefore to have a drink of water every hour or so to replace the loss of body fluids. (Mangili, 2005)

Alcohol

Alcohol, taken even in small amounts; produces a dulling of judgment, comprehension and attention, lessened sense of responsibility, a slowing of reflexes and reduced coordination, decreases in eye efficiency, increased frequency of errors, decrease of memory and reasoning ability, and fatigue. (Daniel, 2008)

Alcohol is absorbed very rapidly into the blood and tissues of the body. Its effects on the physiology are apparent quite soon after ingestion and wear off very slowly. In fact, it takes about 3 hours for the effects of 1 ounce of alcohol to wear off. Nothing can speed up this process. Neither coffee nor hard exercises nor sleep will minimize the effects of alcohol.

Scientists have recently discovered that alcohol is absorbed into the fluid of the inner ear and stays there after it has gone from the blood and brain. Since the inner ear monitors; balance, alcohol there can be responsible for incorrect balance information and possibly spatial disorientation. (Reinhart, 2002)

The presence of alcohol in the blood interferes with the normal use of oxygen by the tissues (histotoxic hypoxia). A pilot should never carry a passenger that is under the influence of alcohol. Such a person's judgment is impaired. His reactions during ascent to higher altitudes are unpredictable. He may become belligerent and unmanageable and a serious hazard to the safety of the flight.

The rule for both pilot and passengers in relation to alcohol quite simply should be "No alcohol in the system when you fly". The Air Regulations require that a pilot allow at least 12 hours between the consumption of alcohol and piloting an airplane. In fact, more time is probably necessary. An excellent rule is to allow 24 hours between the last drink and take-off time. The after effects (hangover) of alcohol consumption also affect performance ...
Related Ads