Wpa, Wpa2 In Wireless Network

Read Complete Research Material



WPA, WPA2 in Wireless Network



WPA, WPA2 in Wireless Network

Short for "wireless fidelity", Wi-Fi is one of the most popular wireless communications standards on the market. In its first stages, Wi-Fi technology was almost solely used to wirelessly connect laptop computers to the internet via local area networks (LANs), but thanks to the immense flexibility the technology provides, that's no longer the case. Wi-Fi technology is now found in a host of non-computer electronic devices as well, such as home theater receivers, portable gaming devices, DVD players and even digital cameras.

 

The security of a wireless LAN is very important, especially for applications hosting valuable information. For example, networks transmitting credit card numbers for verification or storing sensitive information are definitely candidates for emphasizing security. In these cases and others, proactively safeguard your network against security attacks.

WEP (wired equivalent privacy) is 802.11's optional encryption standard implemented in the MAC Layer that most radio network interface card (NIC) and access point vendors support. When deploying a wireless LAN, be sure to fully understand the ability of WEP to improve security.

If a user activates WEP, the NIC encrypts the payload (frame body and CRC) of each 802.11 frame before transmission using an RC4 stream cipher provided by RSA Security. The receiving station, such as an access point or another radio NIC, performs decryption upon arrival of the frame. As a result, 802.11 WEP only encrypts data between 802.11 stations. Once the frame enters the wired side of the network, such as between access points, WEP no longer applies.

As part of the encryption process, WEP prepares a keyschedule ("seed") by concatenating the shared secret key supplied by the user of the sending station with a random-generated 24-bit initialization vector (IV). The IV lengthens the life of the secret key because the station can change the IV for each frame transmission. WEP inputs the resulting "seed" into a pseudo-random number generator that produces a keystream equal to the length of the frame's payload plus a 32-bit integrity check value (ICV).

The ICV is a check sum that the receiving station eventually recalculates and compares to the one sent by the sending station to determine whether the transmitted data underwent any form of tampering while intransient. If the receiving station calculates an ICV that doesn't match the one found in the frame, then the receiving station can reject the frame or flag the user.

WEP specifies a shared secret 40 or 64-bit key to encrypt and decrypt the data. Some vendors also include 128 bit keys (know as "WEP2") in their products. With WEP, the receiving station must use the same key for decryption. Each radio NIC and access point, therefore, must be manually configured with the same key.

Before transmission takes place, WEP combines the keystream with the payload/ICV through a bitwise XOR process, which produces ciphertext (encrypted data). WEP includes the IV in the clear (unencrypted) within the first few bytes of the frame body. The receiving station uses this IV along with the shared secret key supplied ...
Related Ads