In probability theory and statistics, the standard deviation of a statistical population, a data set, or a probability distribution is the square root of its variance. Standard deviation is a widely used measure of the variability or dispersion, being algebraically more tractable though practically less robust than the expected deviation or average absolute deviation.
It shows how much variation there is from the "average" (mean) (or expected/budgeted value). It helps detect tampering of data. A low standard deviation indicates that the data points tend to be very close to the mean, whereas high standard deviation indicates that the data are spread out over a large range of values.
For example, the average height for adult men in the United States is about 70 inches (178 cm), with a standard deviation of around 3 in (8 cm). This means that most men (about 68 percent, assuming a normal distribution) have a height within 3 in (8 cm) of the mean (67-73 in (170-185 cm)) - one standard deviation, whereas almost all men (about 95%) have a height within 6 in (15 cm) of the mean (64-76 in (163-193 cm)) - 2 standard deviations. If the standard deviation were zero, then all men would be exactly 70 in (178 cm) high. If the standard deviation were 20 in (51 cm), then men would have much more variable heights, with a typical range of about 50 to 90 in (127 to 229 cm). Three standard deviations account for 99.7% of the sample population being studied, assuming the distribution is normal (bell-shaped).
Normal distribution
In probability theory and statistics, the normal distribution or Gaussian distribution is a continuous probability distribution that often gives a good description of data that cluster around the mean. The graph of the associated probability density function is bell-shaped, with a peak at the mean, and is known as the Gaussian function or bell curve.
The Gaussian distribution is one of many things named after Carl Friedrich Gauss, who used it to analyze astronomical data,[1] and determined the formula for its probability density function. However, Gauss was not the first to study this distribution or the formula for its density function—that had been done earlier by Abraham de Moivre.
The normal distribution is often used to describe, at least approximately, any variable that tends to cluster around the mean. For example, the heights of adult males in the United States are roughly normally distributed, with a mean of about 70 inches (1.8 m). Most men have a height close to the mean, though a small number of outliers have a height significantly above or below the mean. A histogram of male heights will appear similar to a bell curve, with the correspondence becoming closer if more data are used.
Cell Adhesion Molecules
An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon ...