Assignment

Read Complete Research Material

ASSIGNMENT

Assignment

Assignment

Question 1

The essential role of this active element is to magnify an input signal to yield a significantly larger output signal. The amount of magnification (the "forward gain") is determined by the external circuit design as well as the active device. Many common active devices in transistor amplifiers are bipolar junction transistors (BJTs) and metal oxide semiconductor field-effect transistors (MOSFETs). Applications are numerous, some common examples are audio amplifiers in a home stereo or PA system, RF high power generation for semiconductor equipment, to RF and Microwave applications such as radio transmitters. Transistor-based amplifier can be realized using various configurations: for example with a bipolar junction transistor we can realize common base, common collector or common emitter amplifier; using a MOSFET we can realize common gate, common source or common drain amplifier. Each configuration has different characteristic (gain, impedance...).

Type-I: Bipolar junction transistor

A bipolar (junction) transistor (BJT) is a three-terminal electronic device constructed of doped semiconductor material and may be used in amplifying or switching applications. Bipolar transistors are so named because their operation involves both electrons and holes. Charge flow in a BJT is due to bidirectional diffusion of charge carriers across a junction between two regions of different charge concentrations. This mode of operation is contrasted with unipolar transistors, such as field-effect transistors, in which only one carrier type is involved in charge flow due to drift. By design, most of the BJT collector current is due to the flow of charges injected from a high-concentration emitter into the base where they are minority carriers that diffuse toward the collector, and so BJTs are classified as minority-carrier devices.

An NPN transistor can be considered as two diodes with a shared anode. In typical operation, the emitter-base junction is forward biased and the base-collector junction is reverse biased. In an NPN transistor, for example, when a positive voltage is applied to the base-emitter junction, the equilibrium between thermally generated carriers and the repelling electric field of the depletion region becomes unbalanced, allowing thermally excited electrons to inject into the base region. These electrons wander (or "diffuse") through the base from the region of high concentration near the emitter towards the region of low concentration near the collector. The electrons in the base are called minority carriers because the base is doped p-type which would make holes the majority carrier in the base.

To minimize the percentage of carriers that recombine before reaching the collector-base junction, the transistor's base region must be thin enough that carriers can diffuse across it in much less time than the semiconductor's minority carrier lifetime. In particular, the thickness of the base must be much less than the diffusion length of the electrons. The collector-base junction is reverse-biased, and so little electron injection occurs from the collector to the base, but electrons that diffuse through the base towards the collector are swept into the collector by the electric field in the depletion region of the collector-base junction. The thin shared base and asymmetric collector-emitter doping is what differentiates a ...
Related Ads