Recombinant DNA refers to a collection of techniques for creating (and analyzing) DNA molecules that contain DNA from two unrelated organisms. One of the DNA molecules is typically a bacterial or viral DNA that is capable of accepting another DNA molecule; this is called a vector DNA. The other DNA molecule is from an organism of interest, which could be anything from a bacterium to a whale, or a human (Kreuzer and Adrianne 2000). Combining these two DNA molecules allows for the replication of many copies of a specific DNA. These copies of DNA can be studied in detail, used to produce valuable proteins, or used for gene therapy or other applications.
Discussion
The development of recombinant DNA tools and techniques in the early 1970s led to much concern about developing genetically modified organisms with unanticipated and potentially dangerous properties. This concern led to a proposal for a voluntary moratorium on recombinant DNA research in 1974, and to a meeting in 1975 at the Asilomar Conference Center in California. Participants at the Asilomar Conference agreed to a set of safety standards for recombinant DNA work, including the use of disabled bacteria that were unable to survive outside the laboratory. This conference helped satisfy the public about the safety of recombinant DNA research, and led to a rapid expansion of the use of these powerful new technologies.
Overview of Recombination Techniques
The basic technique of recombinant DNA involves digesting a vector DNA with a restriction enzyme, which is a molecular scissors that cuts DNA at specific sites. A DNA molecule from the organism of interest is also digested, in a separate tube, with the same restriction enzyme. The two DNAs are then mixed together and joined, this time using an enzyme called DNA ligase, to make an intact, double-stranded DNA molecule. This construct ...